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SUMMARY 
A general solution of the equilibrium equations is obtained for a half-space with a stress-free boundary and 
arbitrary but axisymmetric distribution of body-forces and body-couples in the interior of the half-space. 
Few particular cases have been investigated in detail. The stresses, displacements and rotation have been 
obtained at the boundary of the half-space. Numerical results have been displayed graphically to illustrate 
the micropolar effects. 

1. Introduction 

The asymmetric theory of elasticity initiated by Voigt [1] in 1887 and further developed by 
E. Cosserat and F. Cosserat [2] in 1909 has gained a renewed momentum during the recent 
years. The linear micropolar theory has been given by Kuvchinski and Aero [3], Palmov [4] 
and Eringen and Suhubi [5]. 

The axisymmetric Lamb's problem in a semi-infinite micropolar elastic solid has been 
solved recently by Nowacki [6]. Purl [7] and Dhaliwal [8] have obtained solutions respec- 
tively for stress concentration and thermoelastic problems for a semi-infinite micropolar 
elastic solid. The solution to the axisymmetric Boussinesq problem has been obtained by 
Dhaliwal [9] recently. 

In this paper we have considered the boundary z = 0 of the half-space z ____ 0 to be 
stress-free. The case when the boundary of the half-space is fixed has been considered by 
the authors [10] separately. In an elastic half-space a general solution of the equations of 
equilibrium (c), expressed in cylindrical coordinates, has been derived for an arbitrary 
distribution of axially-symmetric body-forces and body-couples. The method employs the 
technique of integral transforms. By demanding that the Laplace transforms of displace- 
ments and rotation have no singularities in the right-half plane of the transform variable, 
we have obtained four linear algebraic equations involving three Hankel-transformed 
components of displacements and rotation. Only three of these equations are independent 
thus showing the independence of the displacement and the rotation fields, as expected. 
The following four cases have been considered in detail: (i) conservative body-forces 
(ii) body-couple as the curl of a vector function (iii) concentrated body-force (iv) con- 
centrated body-couple. 

The corresponding classical results have been obtained by letting the micropolar constant 
tend to zero. The stresses, couple-stresses, displacements and rotation, have been obtained 
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at the boundary z = 0 of the micropolar half-space. Numerical results for the stresses, 
displacements and rotation have been displayed graphically. 

2. General solution of the basic equations 

We consider the system of  cylindrical coordinates r, q~, z and assume the axial-symmetry. 
Hence, we shall be concerned with the following components of the vectors: 

u =- (ur, O, uz), w - ( O ,  we, O ), X = (Xr, O, Xz) ,  Y =- (O, Y~,, O), 

where u denotes the macro-displacement vector, w is the micro-rotation vector and the 
body-force vector and the body-couple vector are respectively given by X and Y. 

As shown by Nowacki [6] the equations of equilibrium of asymmetric elasticity can be 
decomposed into two mutually independent sets of equations in the case of axisymmetry. 
In what follows, we shall be concerned with the set of equations: 

(# + a)(V2 1 )  ae aw e 
- ~ -  . r  + (,~ + ~ - ~) ~:r  - 2 ~ - S S  + p x r  = o, 

ae 1 a 
(# + a)VZuz + (2 + # - a)-~r + 2e'--r -~r (rwe) + pX= = O, (1) 

~ f  ~ - 4~w~ + 2a az Or ] + JY~ = O, 

in which 2, #, a, 7, e are the elastic constants of the micropolar material, p is the density, 
J is the rotational inertia, and 

1 ~ OUz V2 02 1 O O z 
e - (rut) + . . . .  + - -  (2) 

r ar az ' ar z + r -~r & 2 "  

Corresponding 
w = (0, w~, 0), the components of the stress tensors are given by 

to the displacement vector u = (u,, 0, u~) and to the rotation vector 

/Our ur Qu~'] 
(O'rr, o'ee, azz)(r, z) = 2p t ~r , r ' Oz ] + 2(e, e, e), 

1' 8u~ 8ur ~ {Our 
(arz, az,)(r, z ) =  #k-~- r- + 8z ,] T ak-~z 

+ 8  + 
r - \ O r  

~w e 
Oz 

OUz.~ + 2~w~, 
ar ] - 

7), //Ow e 
(#re, ~e,)( ~, z) = ~ ~( Yr 

~e~,  too)( r, z) = (r -y- 0 - -  (3) 

Let (Ur, We' -~r, Ye, azr, #ze)(r z) and (ZTz, J~z, a=)(~, z) denote the Hankel-transforms 
respectively of order 1 and 0 of the corresponding components (Ur, W~, Xr, YO azr, I%,)(r, z) 
and (uz, Xz, a~z)(r, z). We assume that all stresses, displacements and rotations vanish at 
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infinity. So, Hankel- transformation of  the equations (3) yields 

e=(~, z) = (2 + 2#)D~7~ + 24~7,, 

(&=, ~z~)(4, z) = (~ -T- ~)D%, (4) 

where operator D is given by D = d/dz. If  we define the Laplace-transform of  the function 
f(4, z) as f(~,  p), use the notat ion 

( d " f )  = f("), n = 0, 1, 
dz" ].=o 

and take the Hankel  and Laplace-transform of  the system of  equations (1), we obtain the 
algebraic system of  equations: 

[(~ + ~)p2 _ (2 + 2u)4~]~, - (2 + ~ - ~ ) 4 p <  - 2 ~ p ~  = a ( 4 , p ) ,  

(2 + # -- c~)~p~ + [(2 + 2p)p 2 - (/z + ~)~z]~ + 2 ~ 4 ~  = B(~, p), 

2~p~. + 2 ~  + [(7 + g)(p2 _ 42) _ 4 ~ ] ~  = C(4, p), (5) 

where we have assumed that  the displacements and rotation vanish at infinity and the 
right-hand sides of  these equations are given by 

A(4,p) = (# + ~ ) (~1 )+  p~O)) _ (2 + # - ~)~(o) _ 2a#(o) _ p ~ .  

B({,p) = (2 + / t  - a){fi~ ~ + (2 + 2p)(fi~ (*) + p~(z ~ - p )~ ,  

C(~,p) = 2a5~~ + (~ + s)(~(~')+ p#(O)) _ j ~ .  (6) 

Solving the system of  equations (5), we obtain the t ransformed components  of  the dis- 
placement and rotation vectors: 

(2 + 2/0(# + ~)(~ + ~)(~. ~ ,  -~,)(~, p) = (na, D 2, Da)/D, (7) 

where Dx, D2, Da and D are given by 

n~(4,p) = ~(p2, ~2)A + T(p, ~)B + O(p, ~)C, 

D2(~, p) = - k~(p, 4)A + 4)(-  42, -pZ)B - 0 ( - 4 ,  -p)C,  

D~(~,p) = (2 + 2#)(p 2 - 42)[(# + a)(p 2 - ~2)C - 2a(pA + 4B)], (8) 

D(4, p) = (p2 _ r _ ~2), 

in which the functions r  T and O are expressed as 

r  42) = (v + 5)[(2 + 2~)p 4 - (2 + 3~ - ~)p242 + (~ + a)4"] + 4 :~4  ~ - 4a(;~ + 2~)p 2, 

T(p, r = p4[(2 + # - a)(~ + ~)(p2 _ ~2) _ 4a(2 + #)], 

O(p, 4) = 2a(2 + 2#)(p z - ~ )p ,  (9) 

with ~ and m 2 defined as 

---- 4 ~  -1- m 2, m2 = 4ct# (# + ~)(7 + ~)" (10) 
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The points  o f  singularities in (7) are a single pole a t  p = _+ ~, and a double pole at  

P = + 4. By demanding  tha t  the Laplace t ransforms of  displacement  and ro ta t ion  com-  
ponents  have no singularities in the right half-plane of  the t rans form variable p, we obtain  

the following nine condit ions:  

Dj[,=~ = D~I,=r = ODj = 0, j = 1, 2, 3, (11) 

which yields only the following four  distinct relations:  

A1 + B1 = 0, 

AI({)A, + Az({)B , + 2=(2 + 2#)r - 2=(2 + #)4 + = 0, 
1 1 

-A2({)A,  - A3(r - 2=(2 + 2#){C1 + 2=(2 + @ 1 1 #)4 - -  + = 0, (12) 

k2((A2 -Jr ~B2) - m2C2 --- 0, 

in which we have used the following notat ions:  

(At,  B1, CI)  = (A, B, C)p=r 

(&,  B2, C2) = (a, B, C)p=~, 

-07 ,  = 7b-p ,=~ \ a p : l '  

1 = ~ ,=, \ 11, :1' 

~p 1 = ~p ,=~ \ ep / , '  

\ @ ) ,  \ap/1'\Tp-p:,/ \ d e '  ap '  ep ,=~' 

and A x, A z, A a are given by 

AI({) = (2 + # - ~)(7 + e){ = - 4=(2 + 2/0, 

A2({) = (2 + # - =)(7 + ~)~2 _ 2=(2 + / 0 ,  (14) 

Aa(~) = (2 + # - =)(~ + e)~ 2 + 4=#. 

The  micropola r  constant  ~ is contained in k z which is defined as 

2~ 
k 2 = - -  # + = "  

The  system of  equat ions (12) is l inearly dependent  as the sum of  the second and the third 
equat ion yields the first equation.  However ,  its solution depends on the prescribed con- 
ditions at  the boundary  z = 0 of  the half-space z > 0. In  this paper  we shall consider 
the case of  a free boundary.  
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3. General  solut ion for stress-free boundary 

Since the boundary z = 0 is stress-free, we have 

~=(r,  0) =- 0, ~.(~, o) - o, #,~(~, o) - o. 0 5 )  

Using these boundary conditions in the relations (4) given earlier, we obtain 

(2 + 2#)~(1)(~, O) =-Z~ff,"  (o), 

(o) (# + ~)~)(~, 0) = (# - a)~(o) + ec~k~ , (16) 

r 0) - 0. 

The last equation implies that the couple-stress components #~o~ and #~o vanish identically 
at the boundary. 

Using these relations in (6) and the utilizing (12), we obtain the following system of 
equations: 

~o) + ~(o) = M1, 

1 
- ~ ~(o) = _ _ M 2 ,  (#R - ~ F 0 ~  ~ + (#R - ~F:)a(~ ~ + 2~#lZ(,~ + 2 # ) r  24 

[#R - ct(2# - #z _ 2e - #c0]~ ~ + [#R + e(2 2 + 4# 2 + 3;t#)1~7(~ ~ 

1 
+ 2~#l~(x + 2 # ) r  = 2--~-U~, 

1 
"r + -- = M3, 

2# 
(17) 

in which the quantities involved are given by 

R = 2 # 1 2 ( 2 + # - c 0 ~  z, F 1 = 3 2 # + 5 #  2 - e ( 2 + # ) ,  F 2 = ( 2 + 2 # ) ( # - e )  

M 1 = p[(X~)l + (X~)I], l 2 - ~ + ~ 
2# 

J 
M3 = p[~(X,)2 + ~(X~)21 - ~T (Y~)2 

M z = p[Ai(~,) 1 + Az0~,)~] + 2 ~  (2 + 2#)J(~)~ + (2 + \ \  Op ]~ + 1 

(18) 

We find that the above system of equations (17) is linearly dependent as the difference of 
the second and the third equations yields the first equation. Hence, the system to be solved 
for z~ ~ u~'(~ and #(o) may consist of the first, second and the fourth equation whose solution 
will give us 

J~5(~) -/~ 6 (~) M4(~) zT~~ 0) - #~o)(~, 0) - (19) o )  - ' ' 
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in which M 4, M 5, M6, M 2 and Yare given by 

~t4(4 ) = [ ( 2 2 +  3/z)( -  # 0], + # -  0012~2(- (~, + ~  2#)/2431 

M1 (~t2 
• 4 + ~ + (2 + 2#)124Ma, 

m5(4) =_~ U m _ r  [-~ 2(2 + #1 r _ (2 + 2#) M 1 - ~ -  - (2 + 2#)124M3, 

L J 
Mz 

x M  I + ( ~ - 4 ) - ~  - ( 2 + u ) M a ,  

M2 = p[AI(X.)~ + Az(X0d + 2~[(2  + 2,)J(Y~h - (.~ + ,)p \\-~P Jl + \--~P-P ] I /  

( 2#2 ~ 1 (20) 
r(4) = \ ~ )  a(4)' 

where z](4) is given by 

1 

a ( o  = 
+ 2(1 - v)1242(~ - 4 )"  

M~ and M3 involved in these expressions are the same as given earlier in (18). So, the dis- 
placement and rotation components at the stress-free boundary, given by (19), can be 
rewritten as: 

1 - 2 v  _ _ 

u=(r, O) = - - 2 ~ - -  H~ 4 ~ r], 

1 - 2v 
u,(r, 0) - H~[s~5({)3({); 4 --+ r], (21) 2# 2 

1 - 2v 
w~(r, O) = - -  HI[-M6(4)zJ(~); ~ ~ r], 2# 2 

in which the integral operator H, is defined as 

O, 1. (22) 

Use of (21) in the stress-strain relations (3), yields the following non-vanishing stress 
components at the stress-free boundary. 

cr,,(r, 0)=(l-2v'lf~176 l J,(~r)]d4, 
\ # Ido  - r 

( l - 2 v ) f ;  Ii___v__v4Jo(4r) 1 1 a,e(r, 0) = 7z " {Ms(4)z](4) + --r Ji(4r) d{, 
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k 2. 2 }Jo (0 1) 
IZ,q,(r, O) = 21d 2 -~r - -2~I i " woo(r, 0), (23) 

( 0  2#12 ~)w~,(r,O), 
/%(r,  O) = (7 - ~) Or ~ - 

~ ( r ,  0) = ~ z ( r ,  0) = 0. 

Equations (21) and (23) give the general solution to the problem of  stress-free boundary.  
To derive the classical part  f rom the general micropolar  solution, we note that in the 

limiting case (i.e., e --+ 0) the expressions for M4, M s, M 6 and z] given by (20) become:  

Lim [M4(4)] = -PP)~, (4 ,  4) + (2 + 2#)p)~z(4, 4) - (2 + #)4P a 
e-~O ~P 

x [~r(r 4) + 2"z(~, r 

Lim [Ms(4)] = (2 + 2/~)p2r(4, 4) - #p2~(~, 4) + O- + kt)r 8 
a~O Op 

x [Y~(~, 4) + ~7,(~, 0], 
1 

Lira [,d(4)] = L im  [M6(r = 0 (24) 
e '-", 0 ~ "  ' e " *  0 

Hence, we obtain the general solution for the corresponding classical theory problem:  

fo[ P (1 - 2v)J~,(~, 4) - 2(1 - v)i~z(~, 4) u~(r, O) = - 2 ~  

+ ~ ~ {J~,(~, 4) + J~(~, 4)} Jo(~r)d4, 

u~(r, 0) = 2( - v)2,(4,  4) - (1 - 2V)2z(~, 4) 

+ 4 ~-p {2~',(4, 4) + J~(~, 4)} J~(~r)d~, 

w;(r, 0) - 0, 

fo[ ] a,~(r, O) = p 2(1 - v))~,(4, 4) - (1 - 2v)2~(4, 4) + ~ ~ {)~,(~, r + J~,(r r 

x [1 ~-~vv JO(4r) + lJ , (@)]  dr 

fo~[ '9 {2"X~, ~) + "~(,, 0 } ]  
a;~(r, O) = p 2(1 - v))~,({, r - (1 - 2v))~,({, 4) + 4 

v 1 
x [(-i-~--~v_ v ) 'Jo(4r) + r Jl(~r)ld~, 

GS(r, O) - O. (25) 
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We note the symmetry of the force-stress tensor and vanishing of the rotation and couple- 
stress components in the classical theory of elasticity. 

4. Particular cases 

We consider the following particular cases of the body-force and the body-couple. 
Case (i) Conservative body-force, Case (ii) Body-couple as the curl of a vector function, 

Case (.fii) Concentrated body-force, Case (iv) Concentrated body-couple. 
The case where both the body-forces and the body-couples are prescribed can be obtained 

by superposing the corresponding expressions for the body-forces and the body-couples 
cases. 

Case (i) Conservative body-force 
Let us assume that there exists a scalar function #'(r, z) such that the components, Xr and 
X=, of the body-force X are given by 

( ~ 0 ' )  
&b' 0, (26) ( x , ,  0 ,  X z )  = - 0 ~ - '  ~ z  

such that 

~ ' ( r ,  O) - O. 

Of course, in this case, we have 

r~(r ,  z) - 0. 

Hankel-transformation of (26) followed by its Laplace-transformation will yield 

~,(~, P) = ~o(~,  P), /~z(~, P) = -P~o(~, P), (27) 

3, 
where ~o denotes the zero-order Hankel-transform of the function ~'. Hence, from (18) 
and (20), we get 

= = - 0 ~ o ( ~ ,  ~). J~f4(~) - - - M s ( ~ )  - 2#P~0(~, ~), J~f6(~) = - -  2/~p~(ff =' 

So that at the stress-free boundary, we have 

( 1 - 2 v ' ~  f ~  =, uz(r, O) = - P ~q~o(~, ~)A(~)Jo(@)d~, 
\ # / Jo 

f;  -, u/r, O) = p C~Oo(~, 03(~)Jl(@)dr 

( 1 - ~ 2 v )  ~o  =' 
w ~ ( r ,  o )  = - - -  p r - 0 ~ o ( ~ ,  0 ~ ( 0 J d @ ) d r  

at/r ,  0) = 2(1 - 2v)p C~o(r ~)2(~) Jo(@) - Jl(@) d~, 
0 
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f; ;4 o(4, r v)Jo(4r)+- A(gr)ld4, a~,(r, O) = 2(1 - 2v)p =' v 1 
r 

a,z(r, 0) = 2p(1 - 2v)k 2 43~o(4, {)J(4)Jl(4r)d~, 
0 

and the couple-stress components I%, I%, are the same as given in (23), 

(28) 

Case (ii) Body-couple as the curl o f  a vector function 
Let us assume that the body-couple Y(r, z) is the curl of a vector function ~(r, z) = 
= (7~,, O, ~gz) so that 

Y~ = & O r '  

and 

~r(r, 0) - ~z(r, 0) - 0. (29) 

Also, we have the body-forces vanishing throughout the medium. In this case, we obtain 

~( r  P) = Pq'~(4, P) + 4~'~(4, p), (30) 

where ~r and k~ respectively are the first order and zero order Hankel-transforms of ~ ,  
and 7~z. 

Now from (18) and (20), we find that for this case M4, Ms and M 6 a r e  given by: 

2 ~ ,  = --_~r s = (Z + 2p)S4~ t~r(4, r + ~=(r 4) - ~ , (4 ,  ~) - ~- ~=(~, ~) 

-M6 = ('~" + 2/0J42(r -- 4)[~(4, 4) + ~z(4, 4)] Z + # j[r r + 4~z(~, ~)]" (31) 
2 

The expressions for the displacements, rotation and the required components of stresses 
and couple-stresses at the boundary z = 0 are then furnished by (21) and (23) by uti- 
lizing (31). 

Case (iii) Concentrated force 
Let us assume that the body-force X = (Xr, O, Xz) is concentrated at a point (0, O, h), 
h > O, and acts in the direction (0, O, - 1). Let its magnitude be P, so that we have 

and 

X, --- J~, - O, Y~ = fo - O, (32) 

pXz  = - 
P6(r)6(z -- It) 

2~r 

where ~ denotes the Dirac delta function. 
This implies that 

pj~=(~, p) P 
= - - - e  -vh, h > 0 .  

27z 
(33) 
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N o w  from (32), (33), (18) and (20), we obtain 

M~(~) = - [2(1 - v) + 4  h ] ~ - e  - ~  - 2(1 - v)12~2(e - ~  - e -~ )  , 

e-0h 1, 
/ - - \ p  

)~t6(~) = -  ~ 1 _ - i - ~ v ) - ~ - ~ - { [ 2 ( 1 - v ) +  ~ h ] ( ~ -  ~)e-r + r -- e-~h)}. (33) 

In this case, the displacements, rotat ion and stresses at the stress-free boundary  then 
become:  

{(1 - 2v + ~h)~e -r + 2(1 - v)/2~2(~e - ~  - ~e-~h)}zJ(OJl(@)d~, u,(r,0)= ~ o 

uz(r, O) = - - -  {[2(1 - v) + ~h](e -r - 2(1 - v)/2~a(e -~h - e-~h)}z](~)Jo(@)d~, 
4~/~ 

wo(r ,  O) = - - -  { [ 2 0  - v) + @ ] ( ~  - O e  -~"  + ~(e -~h - e - ~ h ) } ~ ( ~ ) J ~ ( ~ O d ~ ,  
4~# 

Pf[ a~,(r, 0) = ~ -  [(1 - 2v + ~h)(e -r + 2(1 - v ) 1 2 ~ 2 ( ~ e  -~h - (e-r 

[ (  1 ~ - -  v )  - --1 J~(@) 1 zi(~) d~, x J~ r 

P Io ~ %o(r, 0) = ~ [(1 - 2v + ~h)(e -~h + 2(1 - v)12~E(~e -~h - ~e-r 

x ~Jo(@) + - -  J~(~O 3(~)d~, 
l" 

a,z(r, 0) = 2/& 2 wo(r, 0) + ~ [(2 - 2v + ~h)(e -~h - 2(1 - v)12~3(e -~h - e-~")] 

/t,~(r, 0) = 2#12 ( ff~_ , - e  1 )  --  - 2 ~  f " w~(r ,  0),  

( 0  2gl2 1)w~,(r,O). (34) 
g~,(r),O = (7 - s) ~r ? - ~ " 

N o w  we will consider some limiting cases: 

(a) When  h ~ 0; i.e., when the concentrated force is applied at the origin r = z = 0, 
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(b) 

we find 

= {2(1 - v)r - 1)}Jl(~r)d~, u~ O) ~ o 

u~ P(1-~)2~ f : (~(~)J~ 

P(1 - v) f :  w~(r, o) = ~ 4(( - O~(~)J~(~r)d~, 

= {2(1 - v)(z](~) - 1} Jo(~r) - - -  Jl(~r) dr ~~ 0) ~-~ o r 

,fo 1 } a~,(r, 0) = ~ {2(1 - v)(zi(~) - 1} d~ + --r J l(~r)  d~, 

{ ,(1 } 
a~ 0) = 2pr z w~(r, 0) + 27z/z (~zt(~)Jt(~r)dr ' 

(O ' - e l )  o 
u~162 0) = 2#l z ~ r  - 2pl 2 " r  wr 

#~(~, o) - i~7~ ~o(~, o). (35) 

When r ~ 0; we find that  the only non-vanishing quantities at the boundary  z = 0, 

are given by 

u~(O, 0) = ~ {[2(I - v) + ~h]~e -~h - 2(1 - v)12~a(e -r - e-r 
o 

%(0, 0) = cr~(0, 0) 

_ P 1 + v foo {(1 - 2v + Ch)(e -r + 2(1 - v)12r162 -~h - (e-~h)}z](r 
4n 1 - v  30  

(36) 

(c) When  r ~ 0, h ~ 0; we find that  

u~ o) - ~ ~3(r 

P l + V f o { 2 ( 1 -  v ) ( A ( ~ ) - 1 } ~ d ~ ,  (37) a~  = a ~ ( 0 , 0 )  - 4n 1 - v 

and all other quantities vanish at the boundary  face z --- 0. 

(d) When  h ~ o~; all the displacements, rotat ions and stresses vanish at the face z = 0. 
This is to be expected, since we are assuming these quantities to vanish at an infinite 

distance f rom the plane z = 0 when the force is applied at a finite distance f rom this 

face. When  the force is applied at an infinite distance f rom the face z = 0, then all 

the quantities must  vanish at this face. 
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Case (iv) Concentrated couple 
We assume that the body-couples acting in the interior of the half-space z _>_ 0 are equiva- 
lent to a single couple concentrated at a point (0, O, h), h > O, whose moment, (0, M, 0), 
is such as to keep all points lying on any given meridian plane before deformation on the 
same plane after deformation. 

So, we have 

and 

x . ( r ,  z)  - x.(r ,  ~) - o, 

Ma'(r)~(z - h) 
JY~(r, z) = 2zcr , h > 0, (38) 

where 6'(r) is the derivative of the Dirac delta function 6(0 defined as 

f i ' ( r )  = lim 
~(r  + , )  - *(r  - ~) 

provided such a limit exists. 
Hence, as before, we get 

~ 7 , - Y ' = - o ,  j P ~ ( ~ , p ) = -  W e -"", 

U44(0 = -Ms(~) = 2#\  1 - 2v } 47r (~e-~h -- ~e-r 

( # ) Mr [2(1--V)12~(~--~)e-'h+e-~h], 
J ~ 6 ( ~ )  = - -  1 - -  2 ] )  

(39) 

which, when used in the general solution given by (21) and (23), yield the following de- 
mation and stress field at the Stress-free boundary: 

u~(r, 0) = - - -  (1 - v) ~2((e-eh -- r162162162 
4n/t 

u,(r,  O)= 4-g7~ (1 - v) {~((e -~" - ~e-~")3(r162 

w~(r, O) = M I ~ {a[2(1 _ v)lZ{( ~ _ ~) + e_~h]a({)jl({r)d{, 
8n#l z Jo 

a~(r, O) = ~---~ f ~ ~2((e-*h-  C e - ~ h ) [ r 1 6 2 1 6 2  

a~e(r, 0) = ~ -  o {2(~e-r - {e-~h) v{d~ + Jl({r) A({)d{, 

~rrz(r, O) = 2ttk2[w~,(r, O) + (1 - v) 4-~p f~o r162 -- ~e,r 
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l%(r, 0 ) =  21dZ(-~r Y - e 0), 

( 8 2pl2 1)we(r, O), 
&,#, o) = (~, - 0 -dr ~, - ~ " 

~=(r, 0) = ~z,(r, o) = o. 

In this case also we will consider the following limiting cases: 

(a) When  h ~ O; we find 

u~ o) = i I ~ 4~-# (1 - v) r _ g)A(g)Jo(gr)dg, 
o 

~/zM fm u~ O) -- a-gZT-. (1 - v) ~z(ff _ {)~(Ojl(~r)d~, 
o 

w~(r,O)= 8~z#lzM f ~ { 2 [ l + 2 0 -  v) 12{(~ - O]A({)dt({r)d{, 

= ~ z ( ~ _  4) ~Jo(~ r) J l (~r)  A(~)d~, ~176 ~-~ o 

203 

(40) 

U E ' ,7~,(r, O) = ~(~  - 0 VUo(~O + 
o r 

E fo ] cr,~ O) = 2/.tk 2 w~(r, O) + 4 z f f  (1 - v) r _ {)3({)Jt({r)d{ , (41) 

and p~ O) and/*~r(r, O) are given in terms of  w~ by equations (35), where w~ is given 
above. 

(b) When r ~ O; we find 

M j.oo 
uz(0, 0) = - - -  (1 - v) {2(~e-eh - { e - % A ( O d ~ ,  

4~z/~ o 

o',,(0, 0) = O'~bO(0, 0) = ~ (1 + V) r -- { e - % A ( O d ~ ,  (42) 

while all o ther  quantities vanish at z -- 0. 

(c) When r ~ 0, h -+ 0; we find 

f u~ o) = ~ (1 - v) ~2(~ _ Oa(Od~, 
o 

1- -v  
o-~ O) = o'~4,(0, O) = 1 + v 'uu~ 0), (43) 

and all other quantities are zero. 
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5. Numerical results and general comments 

The integrals occurring in this paper are difficult to evaluate analytically. Instead, we 
approximate them numerically. 

These integrals, in general, are of the form 

y = j :  e- Xf(x) dx. 

To compute this integral, Gaussian-Laguerre quadrature formulas are used to get the 
approximations: 

y,  = ~ [A~ ")'f(xk)(")], n = 2 ,3  . . . . .  

k = l  

which are exact whenever f(x) is a polynomial upto the degree 2n - 1. As pointed out by 
Krylov [11] the nodes x~ ") are the roots of the Laguerre polynomials L,(x) of degree n. 
Values of the nodes xk and the coefficients Ak for n = 1(1)16(4)32 are listed in the above- 
mentioned reference. In our computations, we have taken n to be 24 or 32. 

Numerical computations has been done for values of r lying between 0 and 3, with the 
elastic constants v and l z given by v = 0.25 and 12 = 1. To make a comparative study, 
we let the micropolar constant ~ to vary between zero and infinity, and then observe the 
variation of the stress and the displacement fields with ~. Since k 2 is given by k z = 2~/(# + ~), 

2"0 

I-5 

I'0 

0 5  

" ~ 1  I I I [ I f I I I I l I 
\ 

\ 
k2= O,l ~ . . . . . . .  C[o$$ical 

- -  Micropolor 

k2=0"2 

\ 
\ 

k 2 ~  \ 

k . .o \ T 

- \ T 
x 

0"2 0"4 0.6 0 8  I'0 12 I '~, 1"6 E8 2 0  2-2 2"4 2"6 2"8 

.z 

.z: - k2*2 

'~ .o~ 2 

_ _ _ _  

.O2 

ooz o - - ;  .,' ~ ~ ,!o ,!~ ,!, ,!~ ,19 ",o '.2 ~'., 2'.6 ; . . . .  

Figure 1. Variat ion o f  the normal  displacement with  r and k 2 on  the stress-free boundary  of  the half-space 

under the act ion o f  concentrated force for ~ = 0.25, l 2 = 1 and h = 1. 
Figure 2. Variat ion o f  the rotational  component  wo with r and k 2 at the stress-free boundary  o f  the half- 
space under the action o f  concentrated force for v = 0.25, 12 = 1 and h = 1. 
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.14 

k 2= .2 

k2= . ]  

o .2 A. ~ B I 0 1,2 1,4 16 IJ~ ~D  Z Z ~,4 2,6 2.8 

F i g u r e  3. Variation of  the normal displacement with r and k 2 at the stress-free boundary of  the half-space 
under the action of  concentrated couple for v = 0,  12 = 1 a n d  h = 1. 

.40 
k 2= .t 

.35 ~ = . 2  
k 2 ;  -5 

�9 ~o  ~ =I,~ 

k 2 : 2 .  

.zo  

~" . is  

. r 

F i g u r e  4.  Variation of  the rotational component w~ with r and k :~ at the stress-free boundary of  the half- 
space under the action of  concentrated couple for ~ = 0 .25 ,  l 2 = 1 a n d  h = 1. 

we find that the interval 0 < a < oo for a is reduced to the interval 0 < k 2 < 2 for k 2. 
So, we consider the values of k 2 given by 0, .1, .2, .4, .5, l, 1.5 and 2. This includes the 
special case of the classical theory of  elasticity given by :t ~ 0 (i.e., k 2 ~ 0). 

Figs. 1-4 show the variation o f  the normal displacement and the rotation on the stress- 
free boundary of  the half-space which is under the action of concentrated force and con- 
centrated couple, considered separately, at the point (0, 0, 1) of the micropolar semi- 
infinite medium. 

In general, we observe a marked difference between the classical and micropolar solutions 
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for small values of  r. I t  is interesting to note that this difference becomes significantly larger 
in absolute values with the increasing values of  the micropolar constant a (Fig. 1). We also 

observe that the rotation is smaller in magnitude than the normal displacement. We find 
that the displacements converge to zero more rapidly than those observed in the case of  

the rotational component;  and note a distinct behaviour of  these quantities for the maxi- 
mum value of the micropolar constant a as demonstrated by k 2 = 2 in these graphs. We 

note the contrasting behavior of  displacements and rotation which, when considered 
separately for concentrated force and concentrated couple, show opposite trend in its values 

obtained for increasing micropolar constant a. We find that the normal displacement 
decreases in magnitude with a in the case of  concentrated force while it increases in magni- 

tude with ~ in the case of  concentrated couple. The rotation components behave exactly 

in the opposite way. 
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